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1. Introduction 
 
The nuclear reactor reload optimization problem (POR) is a subject of great concern of nuclear engineering 

since each additional day of operation in full capacity means a revenue of about a million. The need of search 

in a vast sample space to optimize this kind of problem brought up the implementation of artificial intelligence 
(AI) algorithms with the purpose of reducing the necessary time, or number of evaluations in the sample space, 

for obtaining the best result possible based on these evaluations. The presented work make use of PBIL 

(Population-Based Incremental Learning), an optimization algorithm inspired on the evolution of the genotype 

(probability vector) within a population, in a parallel structure aiming, called PPBIL, in order to find a solution 
that maximizes the burning period while respecting the maximum power peaking factor permitted and 

reducing the mean evaluation time. This work uses the data of cycle 7 of Angra 1 PWR nuclear reactor, as it 

is commonly revisited in literature, using nodal reactor physics code RECNOD to feed the algorithm with the 
necessary parameters for evaluation of the samples. The results found with values obtained are quite like those 

found in literature; however, with a mean evaluation time 355ms utilizing four cores opposed to 715ms 

utilizing a single core in a 1.6GHz i5-8265 quad-core processor. 
 
 

2. Methodology 

 

The PBIL[1] is inspired on the evolution a genotype (probability vector) of a fixed sized population over the 
course of generations. Each individual is generated with each gene represented in binary with the probability 
of such gene being 0 determined by the probability in the same position of the probability vector. The 
population is initialized with each gene having 50% of probability of being 0 and as generations (iterations) 
pass by in accordance with Darwin’s evolutionary theory the most fit individual is chosen and based on the 
genes of such individual the probability vector is updated for the next generation. The rate in which the most 
fit individual influences the probability vector of said population is determined by the algorithm learning rate 
and also determines how fast it will converge. However, at the cost of the quality of result due to the lowering 
of the number of evaluations. Each position of the probability vector is updated based on the Eq.1, [1]: 

 

P𝐾(i)  = P𝐾−1(i) × (1 −  LR) + LR × Fittest𝐾(i)  (1) 

  

Where 𝑃𝐾 is the probability vector of the generation k, k is the number of the current generation, i is the 
position of the probability vector, Fittest𝐾  is the binary sequence that determines the best individual found 
until the current generation and LR is the constant that determines the algorithm’s learning rate. 

 

The POR [2] consists in finding the best combination of fuel assemblies that maximizes the burning period of 
the nuclear reactor core. The core of Angra 1 is loaded with 121 fuel assemblies; however, due to the 
symmetric geometry of such reactor the problem consists of the permutation of 21 fuel assemblies composed 
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of 3 groups that can’t be permutated between themselves: 1 “central” element, 10 “quartets” and 10 “octets” 
based on the number of symmetrical fuel assemblies are present on the core. Mathematically the problem now 
consists of the product of the permutation within each group of assemblies meaning the sample space consists 
of 1 × 10! × 10!  =  1.317 × 1013 possible combinations. Those conditions are translated in a single vector 
containing which fuel assembly, being 1 to 10 quartets and 11 to 20 octets, will fit in a labelled position in the 
core.  

 

To fully utilize the PBIL its necessary to quantify the fitness of an individual. In this work it is done by 
considering individuals as binary strings of 100 digits which each 5 digits represent a real number between 
[0, 1] and its interpreted as a vector of the ranks using the random keys model [3], the first 10 numbers 
represent quartets and ranked from 1 to 10 and the last 10 numbers represent octets and ranked from 11 to 20. 
Such vector is used as input of the nodal reactor physics code RECNOD [1] which feeds the algorithm with 
the boron concentration (CB) that is proportional do the length of the reactors cycle that is to be maximized 
and the maximum potency relative to the mean Prm which is a quantity that compares to the maximum power 
peaking factor FXY within a margin of error of approximately ±2%. The security restriction 𝐹𝑋𝑌 ≤ 1,435 can 
than be translated to the restriction 𝑃𝑅𝑀 ≤ 1,395 without interfering in this study. The fitness of an individual 
can than be quantified by the equation below: 

 

 

𝒇𝒊𝒕(𝒙) = {

𝟏

𝑪𝑩

 𝒊𝒇 𝑷𝒓𝒎 ≤ 𝟏, 𝟑𝟗𝟓

𝑷𝒓𝒎 𝒊𝒇 𝑷𝒓𝒎 > 𝟏, 𝟑𝟗𝟓

 

 

 

(2) 

The PBIL in this work, however, was developed in a parallel approach (PPBIL) and works as the following 
considering the processing core of rank 0 the brain (master) and cores 1 to 4 the workers (slave): 

 

Program Start 

 

If (Rank = 0): 

Initiate the probability vector with all positions with value 0.5 
Set Initial Parameters (number of generations, population size, learning rate) ; 

Set globalBestFitness as -1 to guarantee that any individual of the first generation 
could best it; 

End If 

 

While (GenNumber < Maximum Number of Generations) or (Convergence Criteria yet to be reached): 

 If (Rank = 0): 
Send probability vector P to all processing cores and the quantity N of individuals it will process 

per generation; 

End If 

Receive P and N; 

Create N individuals based on P; 

Calculate the fitness of each individual created; 

Select the individual that has the best fitness (lowest); 

Send the data about the individual to core rank 0; 

If (Rank = 0): 

Receive the best candidate of each processing unit; 

Select the best and set its fitness as bestLocalFitness; 

If (bestLocalFitness > globalBestFitness): 

globalBestFitness = bestLocalFitness; 

End If 
Update probability vector; 
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End If 

End While 

If (Rank = 0): 

Post Processing and results display. 

End If 

Program End 

 

 

3. Results and Discussion 

 

At first glance as expected increasing the number of processing units utilized speed up the algorithm; however, 
if utilized more processing units than the number of cores available one the machine (4 in this scenario) the 

speed decreases as shown in the image below: 

  
Figure 2: Time to Process 10 generations in function of the number of processes The red line presents tests 

utilizing a population of 20 per Generation while the blue line 60. 
 

Additionally, observing the Figure 3 we can see that the mean time per sample is releated not only to the 

amount of processing units utilized, but also with the total number of evaluations (be it increasing the number 
of generations, population size, or both) to be done. Such fact is justified by the need of setting the initial 

variables and the enviroment preparation at the start of the process (copying files, moving files, etc.) being 

diluted as the number of evaluations increase. 

 

 
Figure 3: Mean evaluation time per sample in function of the size of the population fixed at 50 generations. 

 

The convergence is evident and considering the algorithm still updated frequently the best individual found 

until the very end of the test it is safe to assume that by setting an environment capable of mean evaluation 
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time per sample even lower (by the usage of GPUs or/and Clusters) will achieve even best results and possibly 

in a lower total processing time. 

The table I shows the results of PPBIL and the PBIL_MO[1] developed for the 7th cycle of Angra 1’s nuclear 

reactor and utilize nodal reactor physics code RECNOD to feed the algorithm with the necessary parameters 

for evaluation of the samples. 

 

Table I: Comparison between PPBIL and other algorithms in the literature. 

 

Method Best CB 

(ppm) 

Mean CB 

(ppm) 

Standard 

Deviation 

Number of 

evaluations 

Mean time per 

evaluation (ms) 

Processor 

PBIL_MO 1305 1004 71 10000 - - 

PPBIL 1331 1280 57 100000 355 
1.6GHz i5-8265 

quad-core processor 

 

 

3. Conclusion 

 

In this article was presented PPBIL a methodology based on PBIL (Population-Based Incremental Learning) 

within a population, in a parallel structure aiming in order to solve the POR. By analyzation the results 

presented in section 3, we can see that within the testing conditions PPBIL found best fitness results than 
standard PBIL, that is the parallel approach PPBIL has successfully increased the mean CB lowered its standard 

deviation when compared with its predecessor (PBIL_MO) due to the capability of more evaluations of the 

sample space which shows the parallel approaches of the other methods might as well bring even better results 
than those already acquired. Additionally, PPBIL has shown a good mean time per evaluation which can still 

be lowered by the usage of multiple machines (CLUSTER) and/or by implementation of a GPU parallel 

approach making use of CUDA or other methods to achieve such approach. 
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