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1. Introduction 
 

Natural circulation has been used in recent designs of nuclear power plants. This phenomenon is the core 
of passive systems that do not depend on pumps or active systems [1]. The main advantage of using 
natural circulation is its simplicity, implying cost reduction and proportional safety increase. The 
disadvantage is that natural forces are weak when compared to active systems. Natural circulation 
presents many two-phase flow instabilities in critical conditions which are particularly important to 
thermohydraulic studies. Heat transfer parameters are the focus of this research area. Most of these 
parameters can be obtained through flow patterns imaging due its non-invasive feature. Most of imaging 
studies have recently used artificial intelligence (AI) algorithms to investigate these flow patterns and 
parameters [2][3][4]. Typical AI classification is based on feature extraction. Recent Convolutional 
Neural Network (CNN) development has changed the need for previously extracting image-based features 
to classify patterns. CNNs have been demonstrating significant improvements when compared to 
conventional techniques [5] and other computational vision [6]. 

In such context, this work applies CNNs to experimentally acquired images to classify different 
chugging instabilities (described by Boure, Bergles and Tong [7]) which are typically present in natural 
circulation two-phase flow. 
 
 

2. Methodo logy 

 
The classification task was based on a previous formation of an experimental image database. These 
images were obtained in experiments performed on an experimental setup called Natural Circulation 
Circuit (NCC). This circuit is constituted of glass tubes arranged in U-shape allowing easy visualization of 
one-phase and two-phase flow under atmospheric pressure. Figure 1 shows a NCC scheme presenting 
different segments, including the visualization section.  
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Three different chugging cyclical instabilities were studied on NCC experiments: Incubation (I), Expulsion 
(E) and Refill (R), as described by Boure, Bergles e Tong [7]. These phases and respective time intervals 
between each occurrence are illustrated in Figure 2. 
 The present study used 1152 images acquired on two-phase flow experiments [8]. These images 
were selected based on the occurrence time and, consequently, in general, correspond to typical patterns in 
the middle of each cycle phase. These images were preprocessed by extracting a common Region of 
Interest (ROI) and labelled according to each cycle phase. The neural networks were trained using these 
ROIs as direct input to the machine learning models used in this work.  
 Based on CNN traditional training methodology [10] images were split into subsets using 60% of 
the used database (692 images) for training, 20% (230 images) for validation and 20% (230 images) for 
testing. Three different models were trained to the classification task, and the one which presented best 
results was evaluated using test subset. This main model, VGG_GAP, was based on a traditional 
Convolutional Neural Network called VGG [10] using transfer learning option [11]. This neural network 
had a structure composed of a first block of thirteen convolutional layers interlaid with five max-pooling 
layers, followed by a global average pooling layer, a fully-connected layer with 1024 neurons (ReLU 
activation function), a dropout layer and a fully-connected layer with three output neurons correspondent to 
the three possible classes. To obtain a performance comparison, a neural network model with fewer layers, 
was called CONV_32x64 without using transfer learning. This model had a fist block composed of two 
convolutional layers interlaid with two max-pooling layers, followed by a global average pooling, a fully-
connected layer with 128 neurons (ReLU activation function), a dropout layer and a fully-connected layer 
with three output neurons. The third model was trained to have a ‘baseline’ comparison parameter. This 
third model was composed of a single linear layer and, thus, nominated as LINEAR. The models’ 
evaluation was performed based on the following metrics: precision, recall, average accuracy, and average 
F1-Score with weighting by each class.  

Figure 1: Natural Circulation Circuit (NCC) schematic showing: heating (a), visualization (b), cooling (c) 
and expansion tank (d) sections. 
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3. Results and Discussion 

 

At first stage, a selection of the best model was performed using the trained models to the validation split. 

Table I shows obtained results. 

 

Table I: Performance metrics of trained models on validation subset 

  Precision Recall F1-Score Accuracy 

VGG_GAP 1 1 1 100% 

CONV_32x64 0.99 0.99 0.99 99.57%  

LINEAR 0.93 0.93 0.93 93.04% 

 

The VGG_GAP model presented the best performance, correctly classifying all validation split images. This 
model was considered the best and was evaluated using the test split subset. The CONV_32X64 has wrongly 
classified one among 230 validation images. This fact suggests that much simpler models than VGG_GAP 
model could be developed to have the maximum classification performance. The LINEAR model also 
presented a very good perfomance suggesting that much complex problems can be dealt by this kind of 
model. Is important to emphasize that previous work on the same database from the same group [8], using 
traditional feature extraction from these images, had presented a much inferior performance 

The VGG_GAP model was taken as the best performance model, and was applied to the test split, 
and the results are shown in Table II. 

 

 

Figure 2: Chugging instability cycle observed in NCC and its typical phases and time intervals. 
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Table II: VGG_GAP model evaluation metrics obtained on test split 

  Precision Sensitivity F1-Score Number of Samples Global Accuracy 

Incubation 1 1 1 122 99.57% 

Expulsion 0.96 1 0.98 28 

 Refill 1 0.99 0.99 80 

 Average 0.99 0.99 0.99 230 

 Weighted Average 0.99 0.99 0.99 230 

  

From Table II, the VGG_GAP model wrongly classified one sample among the 230 split test samples which 
corresponds to a 99.57% accuracy. There was an expected performance decrease, but with strong F1-Score 
values. 

 

4. Conclusions 

 

This work has applied three different models of CNN to classify experimentally acquired images into three 
different phases of a typical chugging instability of two-phase flow in natural circulation. The work used a 
database of 1152 images. Among the tested models, the best model was the CNN model called VGG_GAP 
which was based on the VGG-16 model using transfer learning technique. On validation split subset, the 
model obtained 100% of global accuracy in classifying images while the ‘baseline’ model (a linear model) 
presented a 93.04% of global accuracy. The application of VGG_GAP over the test split subset obtained a 
99.5% of F1-Score. 

 It is important to emphasize that the modern techniques of Deep Leaning are still scarcely applied 
on thermohydraulic area. This work shows that they can still be promisingly applied to predictive tasks 
associated with image classification. 
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